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Abstract—Humans ability to detect lies is no more accurate
than chance according to the American Psychological Associ-
ation. The state-of-the-art deception detection methods, such
as deception detection stem from early theories and polygraph
have proven to be unreliable. Recent advancement in deception
detection includes the application of advanced data analysis
and machine learning algorithms. This paper presents a novel
deep learning driven multimodal fusion for automated deception
detection, incorporating audio cues for the first time along with
the visual and textual cues. The critical analysis and comparison
of the proposed deep convolutional neural network (CNN) based
approach with the state-of-the-art multimodal fusion methods
have revealed significant performance improvement up to 96%
as compared to the 82% prediction accuracy reported in the
recent literature.
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I. INTRODUCTION

Every deception detection study conducted since 1986 has
demonstrated that humans ability to detect lies is no more
accurate than chance [1][2][3][4][5][6]. There are very few
people who claim to be really good at detecting deception.
However, they are only correct somewhere around 60% of the
time, even in that case, it is extremely risky to make them
sit in a jury judging you [7]. Moreover, accurate deception
detection is critical for police officers who are responsible to
detain criminals most of the time and they must not detain
innocent suspects.

The state-of-the-art practices in deception detection include
deception detection stem based on early lying theories where
it is assumed that liars exhibit stress-based cues when they
are scared of being guilty [8]. In criminal settings, one of the
standard deception detection methods include the polygraph
test. The polygraph based deception detection requires the
use of skin-contact devices and human expertise. However,
the decisions are subject to error and bias [9] and it is not
very difficult for subject to deceive these devices and human
experts.

The advancement in deception detection could revolu-
tionise military/public/private/law enforcement investigation
performances. Given early findings, researchers have proposed
new strategies to help investigation agencies and police to
catch liars involved in the act. One of the advanced deception
detection methods include the use of advanced machine learn-
ing algorithms using a number of modalities such as speech
[10][11] and text [12]. However, one of the major challenges in

automated deception detection is the generation or availability
of corpuses. Most of the existing deception detection corpuses
are based on acted or artificially collected data where subjects
are asked to narrate stories in deceptive and truthful manner
[4][5][13]. Consequently, such acted corpuses lack real-world
evidence and true emotions.

Recently, the authors in [4] developed a new multimodal
deception dataset based on real-life scenarios including both
verbal and nonverbal features. In particular, the authors ad-
dressed the identification of deception in real-life trial by
collecting videos from public court trials, where deceptive and
truthful behaviours were fairly observable and verifiable. More
details about the dataset are comprehensively presented in [4].
To analyse the dataset, the authors in [4] used two state-of-the-
art classification algorithms: Decision Trees (DT) and Random
Forest (RF) and reported the classification accuracy up to 75%
based on visual and textual cues. In addition, the comparative
results with human capability of detecting deception in trial
hearings revealed outperformance of their proposed approach
as compared to the human capability of identifying deceit.
The authors in [5] extended the work proposed in [4] by
using Support Vector Machine (SVM) and showed up to 82%
deception detection accuracy. However, the authors in both [5]
and [4] applied manual annotation and excluded the use of
audio cues, which has proven to be very important feature for
the optimisation of deception detection methodology.

This paper extends the work presented in [4] and [5] by
fusing audio, visual, and textual cues and introducing a deep
learning driven multimodal fusion for automated deception
detection. In particular, the main contributions of this paper
are:

1) First time use of audio cues (to the best of our
knowledge) for deception detection, achieving the
accuracy of 87.5%

2) Application of deep CNN to textual cues, achieving
the accuracy of 83.78% as compared to the 60.33%
accuracy of the state-of-the-art model [4]

3) Application of 3D deep CNN to visual cues, achiev-
ing the accuracy of 78.57% as compared to the
76.03% accuracy of the state-of-the-art model [4]

4) Fusion of audio (A), visual (V), and textual (T)
features and comparison with the maximum achieved
82% accuracy of the state-of-the-art V+T multimodal
fusion [5]. In particular, following fusion combina-
tions are explored:
• A+V+T early fusion, achieving the prediction

accuracy of 96.42%
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Fig. 1. 3D-CNN architecture: Visual Cues based Deception Detection

• A+V+T late fusion, achieving the prediction
accuracy of 92.01%

• V+T early fusion, achieving the prediction
accuracy of 91.89%

• A+T early fusion, achieving the prediction
accuracy of 91.80%

• A+V early fusion, achieving the prediction
accuracy of 89%

• A+T late fusion, achieving the prediction ac-
curacy of 87%

• V+T late fusion, achieving the prediction ac-
curacy of 86%

• A+V late fusion, achieving the prediction ac-
curacy of 85%

It is to be noted that all the proposed multimodal fusion
approaches have outperformed the state-of-the-art approaches
presented in [4][5]. The rest of the papers is organised as fol-
lows: Section 2 provides a brief overview of unimodal feature
extraction. Section 3 describes early and late multimodal fusion
approaches. Section 4 presents the used dataset, experimental
results, and detailed analysis. Finally Section 5 concludes this
paper.

II. UNIMODAL FEATURE EXTRACTION

A. Visual Feature Extraction: 3D-CNN

Visual Features are extracted from the videos using a 3D-
CNN [14] shown in Fig. 1. 3D-CNN was used due to its
inherent ability to extract both spatial (intra frame) as well
as temporal (inter frame/contextual) features from video.

In the literature, 3D-CNN has been widely used for clas-
sification of volumetric data achieving state-of-the-art perfor-
mance on various tasks such as human action recognition [14]
and video classification [15]. This ability motivated us to adopt
3D-CNN in our framework.

Let video ε IRf×h×w×c, where f is the number of frames, h
is the height of the frame, w is the width of the frame and c is
the number of channels in an image (in our case c=1 since we
consider only black & white frames). Let convolution kernel
ε IRkm×kd×kh×kw×c where kh and kw are height and width
of the kernel respectively, kd is depth of the kernel and km
is the number of feature maps. The max pooling window ε
IRpd×ph×pw where pd, ph and pw are temporal depth, height,
and width of the pooling window respectively.

In experiments, best results were obtained using a 10-
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Fig. 2. CNN architecture: Textual Cues based Deception Detection

layered 3D-CNN architecture as shown in Fig. 1. In the first
convolution layer, 16 feature maps (km) with kernel size of 2
x 2 x 2 (kd x kh x kw) are used. In the second convolution
layer, 32 feature maps (km) with kernel size of 2 x 2 x 2 (kd
x kh x kw) are used. First two layers are followed by a max
pooling layer with window size 1 x 2 x 2 (pd x ph x pw). In
the fourth convolution layer, 64 feature maps (km) with kernel
size of 2 x 2 x 2 (kd x kh x kw) are used. In the subsequent
layer, max pooling with window size 2 x 2 x 2 (pd x ph x pw)
is used. The max pooling is followed by convolution with 64
feature maps (km) with kernel size of 2 x 2 x 2 (kd x kh x kw).
The final convolution is followed by a max pooling layer with
window size 1 x 2 x 2 (pd x ph x pw). This feature extraction
framework is followed by fully connected layers of size 5000,
500 and 2. The activation values of final max pooling layer
were used as features for fusion experiments.

B. Textual Feature Extraction: text-CNN

For extracting features from textual modality, a CNN model
has been used as shown in Fig. 2. Each utterance is represented
as a concatenation vector of constituent words. Each utterance
is either trimmed with a window of 100 words or zero padded
at the end depending on the number of words in it. Words
are converted to vectors using 300-dimensional GloVe word
representation [16], which is trained on 840 billion words
obtained from web crawling. The final CNN model has the
input dimension of 300×100 .

Convolution filters are applied to these concatenated utter-
ances. The network has total 11 layers: 4 convolution layers,
4 max pooling and 3 fully connected layers. Each convolution
layer has a filter size equal to 2 and 15 feature maps. Each
convolution layer is followed by a max polling layer with
window size 2. The last max pooling layer is followed by
fully connected layers of size 5000, 500 and 2. Rectified Linear
Unit [17] was used as a activation function for fully connected
layers of size 5000 and 500. For final layer, softmax activation
was employed. The network learns the abstract representation
of the utterances with implicit semantic information, which
spans over number of words with each successive layer and
finally the entire utterance.
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Fig. 3. Acoustic Cues based Deception Detection

C. Acoustic Feature Extraction: openSMILE

The audio features, such as pitch and voice intensity, are
extracted using widely used open-source software openSMILE
[18]. The features are extracted at frame rate of 30Hz and
100ms sliding window. Voice normalisation is performed using
Z-standardisation. The extracted features consist of several
low level descriptors (e.g. Mel-frequency cepstral coefficients
(MFCCs), intensity, pitch, loudness etc.) and their statistics
(e.g. mean, variance, skewness, root quadratic mean, etc.)

In total 6373 features are extracted using the state-of-
the-art feature set for paralinguistic recognition, specifically
Interspeech 2013 Computational Paralinguistics ChallengE
(ComParE) feature set. This feature extraction framework is
followed by fully connected layers of size 5000, 500 and 2 as
shown in Fig. 3.

III. MULTIMODAL FUSION

Recently the multimodal fusion has gained attention of
many researchers mainly due to its ability to outperform
unimodal systems. There are two most widely used strategies
in multimodal fusion: (1) Feature Level or Early Fusion (2)
Decision Level or Late Level. This section has discussed
various approaches for fusing the information including early
fusion and late fusion.

A. Early fusion

In early or feature-level fusion, the features are first ex-
tracted from input data using either state-of-the-art feature
extraction algorithms or deep neural network based automated
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feature extraction. Then, features are concatenated and feeded
into a classifier. Let Fm be the feature extracted from modality
m. For example, as depicted in Fig. 4, the audio (FAudio),
visual (FV ideo) and textual (FText) features are extracted
using a openSMIlE feature extractor [18], 3D-CNN and CNN
respectively. The features are then concatenated and feeded
into an MLP classifier to classify the multimodal input into 2
categories (truthful or deceptive).

The feature level fusion is advantageous because it utilises
the correlation between multiple features at an early stage
which often leads to better task accomplishment. However, it
is challenging to combine multimodal features as each modal
is acquired at different frame rate. In addition, uneven fea-
tures dimension lead to non-uniform neural network weights
distribution which further leads to poor collective learning.

B. Late (Decision-Level) fusion

In the late fusion, the unimodal classifiers are used to
identify local class prediction for each modality. The local
predictions are fused into a single vector which is further
classified to obtain the final decision.

The late fusion strategy has numerous advantages over
early fusion. For instance in early fusion, it is challenging
to fuse modalities which are of different sizes/dimensions
but in late fusion local decision have same representation
which makes the fusion much easier. However, the major
disadvantage of late fusion lies in its poor utilisation of the
feature-level correlation between modalities.

In decision level fusion, local decisions (Dmodality) are
fused together in one feature vector. For example, as depicted
in Fig. 5(a), separate audio, video and text classifiers can
be trained to obtain DAudio, DV ideo and DText. In the
experiments, we concatenated all the unimodal predicted labels
and an MLP classifier is trained to obtain the final predicted
label.

IV. EXPERIMENTAL RESULTS

A. Real-life Trial Dataset

In this paper, a Real-life Trial corpus [4] has been used.
The dataset contains 121 real-life trial videos (61 deceptive
and 60 truthful). The medium of conversation in all videos
is English. Each video is labeled into two categorical labels:
deceptive and truthful. A subset of the dataset is used to train
(70% training dataset) the classifier and rest of the dataset is
used to test the performance of the trained classifier in face of
new context (30% testing dataset).

B. Unimodal Deception Detection

1) Video: The utterance videos are first converted into
grey scale from RGB. For each of the utterance, frames
are extracted, normalised and combined into a single five
dimensional vector (number of utterances × number of frames
× frame height × frame width × number of channels). The
combined vector is then fed to a 3D-CNN architecture depicted
in Fig. 1. The network is trained using RMSProp optimiser
[17]. The trained 3D-CNN network weights are saved and used
for extracting features for fusion experiments.

2) Audio: The audios are extracted from videos and fed
into openSMILE [18] feature extraction software. The features
are extracted at frame rate of 30Hz and 100ms sliding window.
Voice normalisation is performed using Z-standardisation. In
total, 6373 features are extracted using state-of-the-art feature
set for paralinguistic recognition, specifically Interspeech 2013
Computational Paralinguistics ChallengE (ComParE) feature
set. These features are combined and fed into an MLP classifier
as depicted in Fig. 3.

3) Text: The transcription of spoken words provided with
the dataset are represented as a concatenation vector of con-
stituent words. Each utterance is either trimmed with a window
of 100 words or zero padded at the end depending on the
number of words. Words are converted to vectors using 300-
dimensional GloVe word representation [16] trained on 840
billion words from common web crawling. The concatenated
word representations are then fed to CNN architecture depicted
in Fig. 2. The network is trained using RMSProp optimiser
[17]. The trained CNN network weights are saved and used
for extracting features for fusion experiments.

The transcription of spoken words provided with the dataset
are represented as a concatenation vector of constituent words.
Each utterance is either trimmed with a window of 100 words
or zero padded at the end depending on the number of words.
Words are converted to vectors using 300-dimensional GloVe
word representation [16], trained on 840 billion words obtained
from web crawling. The final CNN model has the input di-
mension of 300×1000. The concatenated word representations
are then fed into a CNN architecture depicted in Fig. 2.
The network is trained using RMSProp optimiser [17]. The
trained CNN network weights are saved and used for extracting
features for fusion experiments.

The architectures are trained and validated using Ten-
sorFlow library and NVIDIA Titan Xp GPU with 12GB of
GDDR5X memory.
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TABLE I. PREDICTION ACCURACY: COMPARISON OF PROPOSED
UNIMODAL DECEPTION DETECTION WITH THE STATE-OF-THE-ART

Modality Prez-Rosas et al. [4] Proposed (Unimodal)
Video (V) 76.33% 78.57%
Audio (A) - 87.5%
Text (T) 60.33% 83.78%

TABLE II. PREDICTION ACCURACY: COMPARISON OF PROPOSED LATE
AND EARLY MULTIMODAL FUSION WITH THE STATE-OF-THE-ART

Modality Fusion State-of-the-art
Late Early [5]

A + V 85% 89.1% -

V + T 87% 91.8% 82%

A + T 86% 91.9% -

A + V + T 92% 96.4% -

C. Performance of Unimodal Architectures

The unimodal deception detection classifier for video, text,
and audio are depicted in Figs. 1, 2 and 3, respectively. The
accuracy performance of the unimodal classifiers are compared
with the state-of-the-art deception detection classifier proposed
in [5]. The results are summarised in Table I. It is to be
noted that for text and video modalities, the proposed unimodal
architectures have outperformed the state-of-the-art approaches
by 23% and 2% respectively. In addition, audio modality
achieved the accuracy of 87.5% which is more than the
accuracy of both visual and textual modalities.

D. Performance Comparison of Proposed Multimodal Early
and Late Fusion Approaches

In this subsection, the proposed multimodal early and late
fusion approaches are compared with the state-of-the-art fusion
approaches for deception detection. The simulation results are
presented in Fig. 7 and Table III. It is to be noted that the
state-of-the-art approach presented in [4] and [5] considered
only visual and textual multimodal cues.

In contrast, this paper has considered all the possible fusion
combinations including A+V, A+T, T+V, A+V+T. In all the
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Fig. 7. Prediction accuracy: Comparison of proposed early and late multi-
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fusion combinations, early fusion outperformed late fusion
and state-of-the-art approaches, whereas the late fusion out-
performed the state-of-the-art approach as well. In particular,
the early fusion performed 4%, 5%, 5%, and 4% better than
late fusion in the case of A+V, A+T, T+V, A+V+T respectively.
In comparison with the state-of-the-art T+V fusion, the pro-
posed late and early fusion outperformed it by 5% and 9.2%
respectively.

Similar trend is evident in Table III, where precision, recall,
and F1 scores for both late and early fusions are presented.
Consequently, in all the experiments bimodal and trimodal
deception classifiers have outperformed unimodal classifiers.

V. CONCLUSION AND FUTURE WORK

In the recent literature, researchers have proposed several
deception detection approaches based on manual annotation,
incorporating only textual and visual cues. To the best of
our knowledge, this work is the first attempt to develop
a fully automated multimodal deception detection approach,
fusing audio, visual and textual features. The simulation results
and critical performance analysis of the proposed unimodal
deception detection models showed that: (1) the audio based
deception detection model achieved the prediction accuracy of
87.5% (2) the automated extracted textual cues based deep
CNN approach achieved the prediction accuracy of 83.78% as
compared to the prediction accuracy of 60.33% presented in
[4] (3) the visual based 3D deep CNN achieved the accuracy of
78.57% as compared to the 76% accuracy in manual annotation
based approach [4]. The simulation results of our proposed
multimodal early and late fusion approaches, incorporating
audio, visual, and textual features achieved the highest accu-
racy of 92% and 96% as compared to the prediction accuracy
of 82% achieved by the state-of-the-art approach, where only
visual and textual cues were considered. In future, we intend
to extend our work by applying advanced attention-based deep
learning approaches.



TABLE III. EARLY VS. LATE FUSION: COMPARISON OF PREDICTION ACCURACY, PRECISION, RECALL AND F1 SCORE

Modality Late Fusion Early Fusion
Accuracy(%) Precision Recall F1-score Accuracy(%) Precision Recall F1-score

A + V 85.0% 0.88 0.85 0.84 89.1% 0.9 0.87 0.88

V + T 87.0% 0.87 0.86 0.86 91.8% 0.91 0.90 0.90

A + T 86.0% 0.83 0.81 0.81 91.9% 0.92 0.89 0.90

A + V + T 92% 0.92 0.92 0.92 96.42% 0.96 0.95 0.95
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